Search

[CCMC 13507-R] CCMC Canadian code compliance evaluation

From: National Research Council Canada

In most jurisdictions this document is sufficient evidence for approval by Canadian authorities.

Learn more about CCMC recognition Look for the trusted CCMC mark on products to verify compliance.

Compliance opinion

It is the opinion of the Canadian Construction Materials Centre that the evaluated product, when used as structural composite lumber (SCL) in accordance with the conditions and limitations stated in this evaluation, complies with the following code:

National Building Code of Canada 2015

ID Code provision Solution type
04-03-01-01-00-0-004.3.1.1.(1) Buildings and their structural members m ...Acceptable
09-23-04-02-00-0-009.23.4.2.(3) Spans for built-up wood and glued-lamina ...Alternative

Ontario Building Code

Ruling No. 10-21-258 (13507-R) authorizing the use of this product in Ontario, subject to the terms and conditions contained in the Ruling, was made by the Minister of Municipal Affairs and Housing on 2010-12-30 (revised 2017-09-19) pursuant to s.29 of the Building Code Act, 1992 (see Ruling for terms and conditions). This Ruling is subject to periodic revisions and updates.


The above opinion(s) is/are based on the evaluation by the CCMC of technical evidence provided by the evaluation holder, and is bound by the stated conditions and limitations. For the benefit of the user, a summary of the technical information that forms the basis of this evaluation has been included.

Product information

Product name

Murphy LVL

Product description

The product is manufactured by laminating veneer sheets of Douglas Fir coated with an exterior type adhesive conforming to CSA O112.6-M1977(R2006), “Phenol and Phenol Resorcinol Resin Adhesives for Wood (High Temperature Curing),” (see CCMC 13019-L) in specific lay-up patterns, which are fed into a continuous press with the grain of the veneer oriented parallel to the length of the member. The lay-up patterns and adhesives used are as specified in the Murphy Company, Engineered Wood Division Manufacturing Standard.

The product is available in thicknesses from 35 mm to 89 mm, in widths ranging from 89 mm to 610 mm, and in lengths up to 24 m.

The manufacturing quality assurance program and records are verified by APA – The Engineered Wood Association as part of the product certification.

Isometric profile of laminated veneer lumber

Figure 1. Veneer orientation of Murphy LVL

Manufacturing plant

This evaluation is valid only for products produced at the following plant:

Product nameManufacturing plant
Sutherlin, OR, US
Murphy LVLProduct evaluated by the CCMC

Product evaluated by the CCMC Indicates that the product from this manufacturing facility has been evaluated by the CCMC

  Conditions and limitations

The CCMC’s compliance opinion is bound by this product being used in accordance with the conditions and limitations set out below.

  • As with all SCL, this product is intended for dry service applications only.Footnote (1)
  • The product is intended for use in construction as an alternative material to lumber. Proprietary design values presented for the product are to be used by professional engineers for design in accordance with CSA O86 for structural applications such as beams, headers, joists, rafters and columns as intended by the product manufacturer. The specific application must be qualified through specific testing and validated by the manufacturer. Applications such as I-joist flanges, studs and metal-plated truss chords are beyond the scope of this evaluation.
  • The pre-engineered tables in the literature outlined below have been provided to the CCMC by the Murphy Company to demonstrate compliance to Part 9 for acceptance by the local authority having jurisdiction (AHJ):
    1. Murphy company’s pre-engineered tablesFootnote (2)

      When the product is used to support uniform loads only, the installation must be in accordance with the tables and installation details published by the Murphy Company in the document entitled “Murphy LVL Limit States Design Guide (2.0 E-LVL – 2.2E-LVL),” dated November 2018.

      For applications falling within the scope of the Murphy Company’s above-noted document, the product must be installed in accordance with the installation guidelines contained therein. Applications outside the scope of these installation guidelines require engineering on a case-by-case basis.

    2. Murphy company’s installation details

      Murphy Company’s pre-engineered details within the document outlined in i. above are limited in scope to building designs where the anticipated loads on the following structural details are not exceeded:

      • floor beam span table (page 3); 
      • garage door header tables (page 4);
      • window and door header tables (page 5);
      • uniform load tables (pages 6 to 9);
      • connection details (page 11); and
      • multiple piece assembly and side load capacity (page 12).  
    3. Engineering required

      For structural applications beyond the scope and limitations of the above-referenced Murphy Company publication or when required by the AHJ, the drawings or related documents must bear the authorized seal of a professional engineer skilled in wood design and licensed to practice under the appropriate provincial or territorial legislation.

      Installations beyond the scope and limitations stated in Sections i. and ii. imply, but are not limited to, the following:

      • higher loads/longer spans than the manufacturer’s pre-engineered details;
      • concentrated loads;
      • areas of high wind or high seismicity;
      • design of supporting members/columns when the total beam/header load exceeds the NBC 2015 pre-engineered beam/lintel tables; and
      • design of supporting foundation footings when the total load exceeds the NBC 2015 pre-engineered floor/roof joist tables.

      The engineer must design in accordance with CSA O86 and may use as a guide the “Engineering Guide for Wood-Frame Construction,” published by the Canadian Wood Council.

      The specified strengths for the product must not exceed the values set forth in Table 1 in this evaluation.

      Nail spacing for the product must conform to Table 3 in this evaluation. Fastener capacities must be as shown in Table 2 in this evaluation.

      The ends of all Murphy LVL members used as joists, rafters and beams must be restrained to prevent rollover. This is normally achieved by attaching a diaphragm sheathing to the top, or to the compression edge, and to an end wall, or shear transfer panel, capable of transferring a minimum unfactored uniform load of 730 N/m or the required shear forces due to wind or seismic conditions. Blocking or cross-bracing with equivalent strength may also be used.

      The compression edges of all Murphy LVL members used as joists, rafters and beams must be laterally supported at least every 610 mm, except where designed in accordance with CSA O86.

    4. Engineering support provided by the manufacturer

      The Murphy Company may provide engineering services in conjunction with its product specification and offers the following support contact number: 541-459-4545.

      This product must be identified with the phrase “CCMC 13507-R” along the side of the product. This CCMC number is only valid when it appears in conjunction with the certification mark of APA – The Engineered Wood Association

  Technical information

This evaluation is based on demonstrated conformance with the following criteria:

Evaluation requirements
Criteria number Criteria name
CCMC-TG-061710-15ACCMC Technical Guide for Structural Composite Lumber

The evaluation holder has submitted technical documentation for the CCMC's evaluation. Testing was conducted at laboratories recognized by the CCMC. The corresponding technical evidence for this product is summarized below. Technical evidence provided in Appendix A shows products were tested to a previous edition of CSA O86 and are applicable to CSA O86-14.

Design requirements

Table 1. Specified strengths (MPa) of the productTable footnote footnote (1)Table footnote footnote (2)Table footnote footnote (3)
Grade Bending strength, fbTable footnote footnote (4)Table footnote footnote – beam Bending strength, fbTable footnote footnote (4)Table footnote footnote – plank Tensile strength parallel to grain, ftTable footnote footnote (5)Table footnote footnote Compressive strength parallel to grain, fc Compressive strength perpendicular to grain, fcp – beam Compressive strength perpendicular to grain, fcp – plank Horizontal shear strength, fv – beam Horizontal shear strength, fv – plank Modulus of elasticity (MOE) – beam Modulus of elasticity (MOE) – plank
2250Fb-1.5E 28.67 28.03 13.85 25.86 9.41 5.65 3.65 1.92 10 340   9 650
3100Fb-2.0E 39.50 37.76 21.55 35.21 9.41 6.90 3.72 1.92 13 790 13 790
3100Fb-2.2E 39.50 37.76 21.55 35.21 9.41 6.90 3.72 1.92 15 170 15 170
Table 2. Equivalent specific gravity for fastener design of the productTable footnote footnote (1)Table footnote footnote (2)
Grade Nails – withdrawal load – installed in edge Nails – withdrawal load – installed in face Nails – lateral load – installed in edge Nails – lateral load – installed in face Bolts – lateral load – installed in face – parallel to grain Bolts – lateral load – installed in face – perpendicular to grain
All 0.49 0.50 0.50 0.50 0.50 0.50
Table 3. Nail spacing for fastener design of the productTable footnote footnote (1)
Thickness (t), mm Orientation FastenerTable footnote footnote (2)Table footnote footnote (3) Minimum end distance, mm Minimum nail spacing, mm – single row Minimum nail spacing, mm – multiple rowsTable footnote footnote (4)Table footnote footnote (5)
32 ≤ t < 38 EdgeTable footnote footnote (6) 64 mm and smaller 64 102
32 ≤ t < 38 EdgeTable footnote footnote (6) 76 mm and 83 mm 64 102
32 ≤ t < 38 EdgeTable footnote footnote (6) 89 mm 89 127
32 ≤ t < 38 FaceTable footnote footnote (7) 64 mm and smaller 38 76 76
32 ≤ t < 38 FaceTable footnote footnote (7) 76 mm and 83 mm 38 76 76
32 ≤ t < 38 FaceTable footnote footnote (7) 89 mm 38 127 127
t ≥ 38 EdgeTable footnote footnote (6) 64 mm and smaller 64 76 102
t ≥ 38 EdgeTable footnote footnote (6) 76 mm and 83 mm 89Table footnote footnote (8) 102 127
t ≥ 38 EdgeTable footnote footnote (6) 89 mm 89 127 152Table footnote footnote (9)
t ≥ 38 FaceTable footnote footnote (7) 64 mm and smaller 38 76 76
t ≥ 38 FaceTable footnote footnote (7) 76 mm and 83 mm 38 76 76
t ≥ 38 FaceTable footnote footnote (7) 89 mm 38 127 127

Appendix A - additional information

The design values obtained from testing to ASTM D 5456-07, “Evaluation of Structural Composite Lumber Products,” as specified in CSA O86-09 are summarized below. The manufacturer’s published pre-engineered joist spans were then designed in accordance with CSA O86-14.

Table 4. Additional test information for the productTable footnote footnote (1)
Property Test information
Bending Specimens were tested in edgewise and flatwise bending to establish the characteristic value. Data from quality control (QC) tests were used to establish the applicable coefficient of variation, CVw. The reliability normalization factor from CSA O86-09 was used to determine the specified strength.
MOE The 2.0E specimens were tested in edgewise bending to establish the mean MOE. The established mean MOE was 2.2 × 106 psi, and is maintained as indicated in the quality control manual (QCM), and is confirmed by the third-party certification agency to form the qualification for the 2.2E product grade.
Shear Specimens were tested in edgewise and flatwise shear to establish the characteristic value. Data from QC tests were used to establish the applicable coefficient of variation, CVw. The reliability normalization factor from CSA O86-09 was used to determine the specified strength.
Compression parallel to grain Specimens were tested in compression parallel to grain to establish the characteristic value. Data from QC tests were used to establish the applicable coefficient of variation, CVw. The reliability normalization factor from CSA O86-09 was used to determine the specified strength.
Compression perpendicular to grain Specimens were tested in compression perpendicular to grain to establish the characteristic value following ASTM D 5456-14b. The characteristic value was multiplied by 1.81 to establish the specified strength in accordance with CSA O86-14. The original value determined in accordance with CSA O86-09 was maintained since it is more conservative compared to the specified strength when calculated in accordance with CSA O86-14 Update No.1.
Tension parallel to grain Specimens were tested in tension to establish the characteristic value. Data from QC tests were used to establish the applicable coefficient of variation, CVw. The reliability normalization factor from CSA O86-09 was used to determine the specified strength.
Nail withdrawal Nail withdrawal values were established following ASTM D 1761, "Standard Test Methods for Mechanical Fasteners in Wood," for an 8d common nail having a 31.75 mm penetration. Specimens were tested and equivalent species capacity was determined in accordance with ASTM D 5456-07, A2.4.
Nail bearing Dowel bearing strength was determined as per ASTM D 5764-97a(2007), "Standard Test Method for Evaluating Dowel-Bearing Strength of Wood and Wood-Based Products," using 10d common nails with a nominal diameter of 3.76 mm and a lead hole diameter of 2.77 mm. Specimens were tested, and the mean bearing capacity was used to establish the equivalent species capacity as per ASTM D 5456-07, A2.5.
Bolt bearing Bolt bearing capacity was determined as per ASTM D 5764-97a(2007) using 12.5-mm- and 19-mm-diameter bolts.
Creep and recovery Creep testing was conducted in accordance with the creep and recovery test described in ASTM D 5456-07. The specimens met the acceptance criteria of ASTM D 6815, "Standard Specification for Evaluation of Duration of Load and Creep Effects of Wood and Wood-Based Products."
Adhesive The adhesive complies with CSA O112.6-M1977. The adhesive used is from the Hexion Inc., family of Cascophen 84204 (CCMC 13019-L).

Administrative information

Use of Canadian Construction Materials Centre (CCMC) assessments

This assessment must be read in the context of the entire CCMC Registry of Product Assessments, any applicable building code or by-law requirements, and/or any other regulatory requirements (for example, the Canada Consumer Product Safety Act, the Canadian Environmental Protection Act, etc.).

It is the responsibility of the user to confirm that the assessment they are using is current and has not been withdrawn or superseded by a later version on the CCMC Registry of Product Assessments.

Disclaimer

The National Research Council of Canada (NRC) has evaluated only the characteristics of the specific product described herein. The information and opinions in this evaluation are directed to those who have the appropriate degree of experience to use and apply its contents (such as authorities having jurisdiction, design professionals and specifiers). This evaluation is valid when the product is used as part of permitted construction, respecting all conditions and limitations stated in the evaluation, and in accordance with applicable building codes and by-laws.

This evaluation is provided without representation, warranty or guarantee of any kind, expressed or implied, and the NRC provides no endorsement for any evaluated product. The NRC accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained herein or the use of any evaluated product. The NRC is not undertaking to render professional or other services on behalf of any person or entity nor to perform any duty owed by any person or entity to another person or entity.

Language

Une version française de ce document est disponible.
In the case of any discrepancy between the English and French version of this document, the English version shall prevail.

Copyright

© His Majesty the King in Right of Canada, as represented by the National Research Council of Canada, 2024

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the CCMC.

Date modified: